

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

ISAC Facility Report

July 7, 2014

- ISAC Performance
- Beam Development Activities
- Backlog and current proposals

Reiner Kruecken | Science Division Head | TRIUMF Professor of Physics | University of British Columbia

ISAC performance

2013 Cyclotron & ISAC Availability

	Beam time	e (hours)	Availability (%)		
	Scheduled	Actual	Actual	Goals	
Cyclotron	5508	5271.5	95.7	>90	
RIB	5200	3827	73.6	>75 (accelerated) >80 (non-accel.)	
SIB	6079	5531	91.0	> 90%	

Cyclotron availability highest ever

SAP EEC July 2014

ISAC RIB performance

	2012 (hours)		2013 (hours)		2014 (week 22) (hours)	
	Expect.	Actual	Expect.	Actual	Expect.	Actual
RIB (experiment)	2450	2745	3920	2607	540	482
RIB (developmen t)	1500	734	350	457	72	~70
Overhead (tuning, etc.)	750	672	930	759	?	?
Scheduled maintenance	340	245	450	475	?	?

RIB availability in 2013

RIB availability, Schedules 124–125 (2013)

SAP EEC July 2014

ISAC performance

ISAC performance, 2005–2013

3064 hours RIB delivery (73.5% of scheduled) 2607 hours experiment run time 457 hours development (15%) 759 hours procedural overhead

1 of 9 production target failed (TM4 FEBIAD cooling coil water leak)

Target/ion source downtime
ISAC facility downtime
Cyclotron downtime
Tuning procedures (overhead)
UO2 test (300 uA-hr limit achieved)
RIB on standby (SIB in use)
RIB development
RIB delivered to experiments

Isotope Landscape at ISAC

July 7, 2014

Yield (ions/s)

Beam Development Activities

High-mass beam delivery

accelerated beams from CSB:

Isotope	Facility	T _{1/2}	Q	ISAC Yield [pps]	Expt. Yield [pps]
^{38g} K	DRAGON	7.64 m	7+	6 x 10 ⁹	$2 \ge 10^7$
⁹⁴ Sr	TIGRESS	1.25 m	15+	$2 \ge 10^8$	$5 \ge 10^4$
⁹⁵ Sr	TIGRESS	23.9 s	16+	$1 \ge 10^9$	$2 \ge 10^7$
⁹⁶ Sr	TIGRESS	1.1 s	17+	$1 \ge 10^{7}$	3 x 10 ⁵

SAP EEC July 2014

ThO₂ Development Target

- High production rates for some heavy and neutron-rich elements (Ac, Ra, At)
- Investigating the release of volatile oxides (NOx, YO, SO, VO, ...)
- Yield measurements of neutron-rich lanthanides and lanthanide oxides

RIUMF

July 7, 2014

Th / U calculated production crosssections for 500 MeV protons (Silberberg-Tsao Model)

The higher thermal conductivity and lower vapor pressure of ThO_2 allows significantly higher operating temperatures than UO_2

- Target production: mostly identical to already established procedures for UO2 targets
- CNSC operating license revision is in progress
- Test in 2014 fall schedule

SAP EEC July 2014

ISAC – AC Raster Magnet (1)

 Rotating a proton beam of reduced width (and smaller tails) on the ISAC high power targets would contribute to a more homogeneous temperature distribution across the target and enable operating at higher average temp.

• Expected to allow beam current increase up to 50% of present levels*

- Increased temperature => enhance diffusion and effusion of the isotopes
- Higher currents will boost production

=> both will contribute to higher yields of radioactive ion beams.

*TRI-DN-08-19 `Rotating proton beam simulations for optimization of the ISAC target temperatures' – P. Jones, M. Trinczek, R. Laxdal

The raster magnet is a ferrite H-frame type magnet - designed and manufactured by ACSI (local Canadian company)

- Two magnet components for X and Y movements
- Two independent power supplies with adjustable frequencies: up to **400 Hz.**
- Integral field up to 150 G-m
- Ceramic vacuum tube
- Rotatable stand, for easy maintenance access
- By adjusting the phases and amplitudes of the X and Y magnets a variety of rastering patterns can be achieved

Schedule:

Drawings approved for manufacture – May 15, 2014 Factory tests – August 1, 2014 (likely delayed) Delivery to TRIUMF – Fall/Winter 2014 Installation – 2015 shutdown First test of rotating proton beam on ISAC target - Spring 2015

RIUMF

Neutron Fission Target Design – TRIUMF•CERN collaboration

- Neutron-rich fission products around Ni-78 and Sn-132
- Less spallation and fragmentation products (cleaner beams)
- Less primary beam power deposition in target material

sotope Mass

Current Status:

• MOU TRIUMF - ISOLDE

In progress:

- Target and converter design
- FLUKA simulations for power deposition, neutron flux, production rates
- Thermal calculations (ANSYS) of heat dissipation

To do:

- Target /UC target discs fabrication
- Test of target assembly
- CNSC approval/Revision of Safety Analysis Report
- Online Test → possible in 2015

Backlog and current proposals

High-demand targets

		Isotopes		Comments / Questions
Та	SIS/RILIS	^{8,9,11} Li, ¹¹ Be	IRIS, MTV, TIGRESS	HP (Li), LP (Be) betaNMR (28kV)
SiC	SIS/RILIS	²⁶ AI (53kV), ²⁸ Mg (57kV)	Impl./ DRAGON/ TIGRESS	TM4 marginal for AI, Mg only possible with TM2 when repaired
TiC	SIS	^{37,38m} K (20kV)	DRAGON (CSB), TRINAT	
UC	SIS/RILIS	^{32,34} Mg, ³⁰⁻³⁴ Al, K,Sr,Fr,Ac	TITAN, FrPNC, TIGRESS, Nucl.Med.	
SiC	FEBIAD	¹⁸ F, ¹⁸ Ne, ^{14,15} O	TUDA, DRAGON, TITAN	Challenging intensity requirements, need optimal performance
Nb	SIS/RILIS	^{74,76} Rb, ⁷⁰ Sr, Y	TITAN, TIGRESS, Laser,	20-8 kV for laser, CSB

Target modules

> Dec 2014
:014-2015
nents
nance

Target Module 2: Source Tray & Einzel Lens Refurbishment

~85% of machined components for 3 source trays complete and inspected

TRIUMF

Ultrasonic cleaning & bench assembly of new TM2 source tray sub-components underway Source tray fastener inventory complete and 95% replenished

Einzel lens tray sub assembly redesign complete, drawings submitted to shop

Remaining: precision assembly, alignment & cooling line soldering

<u>Upcoming milestones (based on current resource assumptions):</u>

- Source tray parts May 2014
- Einzel lens parts June 2014
- Completion of source tray assembly Aug 2014
- Completion of Einzel lens tray assembly Sept 2014
- Installation into TM2 (Hot Cell) Oct thru Nov 2014
- Testing and commissioning Dec 2014

Schedule 126 / 127

#	тм	Target	Ion Source	Delivery goals	Development goals
1	TM4	Ta-LP	SIS/RILIS	¹² Be (IRIS), ⁸ Li (bNMR, MTV)	¹⁰¹⁻¹⁰⁶ Sn, ⁷ Be
2	TM3	TiC-LP	SIS	³⁸ K (DRAGON), ^{37m} K(TRINAT)	³⁵⁻³⁷ Ca
3	TM1	UC-LP	SIS/RILIS	⁹⁵ Sr (TIGRESS) ³⁴ Mg (TITAN), Fr,Ac	³⁰⁻³³ Na,
4	TM3	SiC-HP	FEBIAD	¹⁴ O (GPS, TITAN), ⁸ He (TAMU)	⁷ Be
5	TM1	Ta-LP	SIS/RILIS	¹¹ Be (TIGRESS), , ⁸ Li (bNMR)	⁷⁸ Y, ⁷ Be
6	TM4	UC-LP	SIS/RILIS	³⁴ AI (TITAN), ³¹ Na (OSAKA), Fr, Ac, ²⁰²⁻²⁰⁸ Fr (Laser)	FEBIAD: Ar, Ne, Kr, Xe, I
	Mini-Shutdown				
	TM3/4	Ta-HP	SIS/RILIS	¹¹ Li (IRIS), ⁹ Li	
	TM3/4	Nb-HP	SIS/RILIS	⁷⁴ Rb (TITAN?) ⁷⁶ Rb (TIGRESS), ⁷⁰ Sr, Y (LASER)	
	TM1	UC-LP	SIS/RILIS	³² Na GRIFFIN,	
	TM1/3/4	ZrC-LP	SIS/RILIS	⁶² Ga GRIFFIN, would also work for Rb, Sr Y beams and could replace Nb-HP	
	TM3	ThO-LP	FEBIAD	Ar?	Establish broad spectrum of yields

SAP ISAC Backlog

Target	Н	М	
Nb-SIS/LIS	4	13	βNMR capability
NiO-FEBIAD	2	20	
SiC-FEBIAD	56		
SiC-SIS/IGLIS	14		
SiC-SIS/LIS	57	4	
Ta-SIS/IG-LIS	5		
Ta-SIS/LIS	112	15	βNMR capability
TiC-FEBIAD		20	
TiC-SIS	54		
UC-FEBIAD	30	3	
UC-SIS/LIS	123		
ZrC-FEBIAD	12	13	
ZrC-SIS/LIS	14		comparable to Nb
Total shifts:	485	99	

as of June 1, 2014

~ 60 shifts per target

ISAC Backlog and requests

→ RIB oversubscription factor 2.54

	ISAC-RIB	ISAC-SIB
Status Reports/Addenda	150	0
New Proposals	117	26
Sum	267	26

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Canada

TRIUMF: Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McGill | McMaster | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's | Simon Fraser | Toronto | Victoria | Winnipeg | York

> BRITISH COLUMBIA

Thank you! Merci!

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

CIHR IRSC Canada Foundation for Innovation Fondation canadienne pour l'innovation NSERC NRC CNRC CRSNG Western Economic Diversification de l'économie Diversification Canada de l'Ouest Canada Natural Resources Ressources naturelles Canada Canada BC Cancer Agency PHYSICS imagination at wor 🙆 nordion Centre for Probe Developmen and Commercialization ØC LAWSON Positron Emission Tomography Imaging Pacific Parkinson's Research Institute CT THE UNIVERSITY OF BRITISH COLUMBIA